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Elasto-plastic and adhesive contact: An improved linear model and 
its application 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• An improved linear elasto-plastic and 
adhesive contact model is developed. 

• Input parameters are significantly 
reduced compared to other linear 
models. 

• The stiffness and maximum pull-off 
force in the model are validated. 

• Critical plastic-adhesive sticking veloc
ity is investigated. 

• Critical yield contact pressure for jump- 
in induced yielding is analysed.  
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A B S T R A C T   

An improved linear model is developed for elasto-plastic and adhesive contact. New correlations are proposed 
and validated to estimate the key parameters of the model, including contact stiffness, yield point, maximum 
pull-off force and time step. The newly proposed contact model is applied to the analysis of single particle contact 
behaviour upon impact and bulk particle flow behaviour by DEM simulations. The results show that both single 
particle and bulk powder behave more “cohesively” if contact plastic deformation is considered. A cohesion yield 
number is proposed to describe the extent of yielding when cohesive particles are in contact with each other. 
There is a critical particle size, below which the effect of plastic deformation becomes prominent and must be 
considered. This provides a new framework and criteria for elasto-plastic and adhesive contact model, and a step 
towards understanding the effect of plastic deformation on the behaviour of cohesive particles.   

1. Introduction 

The macroscopic bulk behaviour of powders is governed by the 
microscopic activities of the individual particles in a granular assembly. 
Predicting the bulk behaviour of a particulate system requires a thor
ough understanding of the dynamics of individual particles at micro
scopic level, but this is very difficult to achieve experimentally. As an 
alternative method, numerical simulations by Discrete Element Method 

(DEM) [1] are usually used. In DEM simulation, particle interaction is 
described by a contact model of choice and particle motion is governed 
by Newton's law. To accurately represent a realistic particulate system, 
the particle physical and mechanical properties (e.g. size and shape 
distribution, Young's modulus, density) and interaction parameters (e.g. 
friction coefficient, restitution coefficient) should be characterised 
experimentally at single particle level [2,3], or artificially tuned to 
produce matching results with the bulk calibration tests (e.g. repose 
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angle, uniaxial compression test) [4], and the contact model should obey 
realistic physical deformation law of the particle material. 

Particle contact can be divided into four classes: elastic, elasto- 
adhesive, elasto-plastic, and elasto-plastic with adhesion, depending 
on the material used. For elastic contact, deformation is recoverable, and 
the normal contact force can be well described by Hertz contact model 
[5]. For elasto-adhesive contact, as the particles tend to stick to each 
other, additional energy is required to separate them. The normal con
tact force in the elasto-adhesive contact can be predicted by JKR theory 
[6]. JKR theory extends the Hertz model to the elasto-adhesive contact 
by using an energy balance approach, and the contact area is larger than 
that of Hertz model. The normal contact force in the elasto-adhesive 
contact could also be predicted by DMT theory [7], which assumes 
that the adhesive force does not affect the contact area and considers the 
adhesive force and Hertz force separately. In DEM simulation, contact is 
usually assumed to be either elastic or elasto-adhesive, and the afore
mentioned contact models have been widely applied to simulate various 
particulate systems, such as coating [8] and powder spreading [2,9]. 
However, most materials first deform elastically, which then followed 
by a plastic deformation. This is especially true for rough particles with 

tiny asperities on the surface. In elasto-plastic contact, a portion of the 
particle deformation is recoverable, and the rest is permanent. To ac
count for plastic deformation, the normal contact force could be calcu
lated by the non-linear model of Thornton and Ning [10], or the linear 
model of Walton and Braun [11]. However, in the latter, the initial 
elastic deformation stage is omitted, which is not realistic. If cohesive 
force is involved, the contact could become elasto-plastic with adhesion, 
and the corresponding contact model becomes more complex as the 
overlap and negative force at the detachment point are affected by 
plastic deformation (i.e. permanent deformation with flattened area). 
For this specific type of contact, only a limited number of models are 
available to estimate the normal contact force of particles for DEM 
simulation. The latest ones are the non-linear model of Thornton and 
Ning [10] and the linear models of Pasha et al. [12] and Luding [13]. In 
the model of Luding [13], the contact breaks at zero overlap, which is 
unpragmatic since plastic deformation is permanent and hence the 
detachment must take place at non-zero overlap. This model also as
sumes that all particles undergo plastic deformation, but in the reality, 
for dynamic particulate system, the external load applied on the parti
cles at some regions is not large enough to cause yielding and the contact 
is still elasto-adhesive. In the non-linear model of Thornton and Ning 
[10], the equations of normal contact force is derived based on material 
properties and contact mechanics theory, but the governing equations 
are expressed in a very complex form, and the contact model is very 
computationally expensive due to its non-linearity nature. The model of 
Pasha et al. [12] is a linearised version of Thornton and Ning's model 
[10], and it is more appealing than both the models of Luding [13] and 
Thornton and Ning [10] in terms of physical nature and computational 
time. However, Pasha et al. [12] mainly proposed a framework for the 
contact model, and many details are not provided, such as the unified 
mathematical equations of the contact force and the criteria for esti
mation of the contact parameters. Pasha et al. [12] proposed a simplified 
version for further analysis of the effect of plastic deformation on par
ticle contact behaviour, but the initial elastic process is omitted. It 
should be noted that in both models of Luding [13] and Pasha et al. [12], 
the adhesive sticking velocity predicted by JKR theory is not guaranteed 
anymore. 

In this work, an improved linear model is proposed for the elasto- 
plastic and adhesive contact, and its application for the analysis of the 
behaviour of single particle contact and bulk particle flow is also 
focused. A comprehensive description of the mathematical framework of 
the proposed contact model is firstly given in Section 2. Then the 
equations to determine key input parameters of this contact model are 
rigorously derived in Section 3, and these correlations are further vali
dated and compared against the ones digitized from previous literature. 
In Section 4, the equations to determine the critical sticking velocity are 
derived, and DEM simulation of single particle contact behaviour upon 
impact is also carried out, where the proposed contact model is validated 
against previously experimental data. Then the flowability of bulk 
powder is analysed in Section 5 to shed light on the combined effects of 
cohesion and plastic deformation, where the particulate system of FT4 
rheometer is simulated. It is followed by the discussions of the advan
tages of the proposed contact model in Section 6. This work provides a 
linear elasto-plastic and adhesive contact model, which is well suited for 
the DEM simulations, and also a step towards understanding the effect of 
plastic deformation on the sticking velocity of single cohesive particle 
and flowability of bulk cohesive powder. 

2. Description of the proposed contact model 

The total contact force, F, is the sum of normal contact force fn, 
tangential contact force ft, and the damping force (fnd, ftd): 

Fn = f n + f nd (1)  

Ft = f t + f td (2) 

Fig. 1. Schematic diagram of the normal force f-overlap α relationship in the 
improved linear elasto-plastic and adhesive model. 

Fig. 2. Schematic diagram of the normal force f-overlap α relationship in the 
loading/unloading and reloading processes for the contact: (a-b)-without 
plastic deformation (fmax < fy), where ke is a constant and corresponds to the 
lower limit of ke, and it is assigned as kel for convenience; (c-d)-with plastic 
deformation (fmax > fy), where ke varies with αmax. 
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2.1. Normal contact force 

The normal contact force fn is given as: 

f n = f n (3)  

where n is the unit vector in the normal direction; f is the magnitude of 
normal contact force, which is linear to the normal overlap α, as shown 
in Fig. 1. 

If the maximum load applied is less than the yield force fy of the 
particle, there will be no plastic deformation at the end of loading 
process, thus, the contact behaves elastically with adhesion. In this case, 
Fig. 1 could be simplified to Fig. 2(a)-(b), where the contact is consid
ered as a linear version of JKR model [5]. During the loading stage, the 
normal contact force f drops to -f0 as soon as a contact is established, f 
then increases linearly with the normal overlap α, the slope of which is 
dictated by the elastic stiffness ke. During the unloading stage, the 
contact force is non-zero even for negative overlap, as further work is 
required to separate the adhesive contact. The contact breaks at a 
negative overlap αfe with contact force of -5fce/9, which is the same as 
JKR model. 

If the maximum load is larger than the yield force fy, there will be a 
plastically-deformed domain within the contact area, resulting in plastic 
deformation before the end of the loading process. At the loading stage, 
as shown in Fig. 2(c), f increases linearly with the normal overlap, the 
slope of which follows that of plastic stiffness kp in the plastic phase, 
where kp is usually less than ke. At the unloading stage, with a decrease 
in normal overlap, f initially decreases linearly with the elastic stiffness 
ke until it reaches point E (α = αcp, f = − fcp), where a maximum pull–off 
force fcp is obtained. f then increases slowly with a stiffness of kc until it 
reaches point F (α = αfp, f = − 5fcp/9), where the particles are detached. If 
a normal overlap is still identified after the detachment, i.e. the particle 
centre distance is less than the sum of contact radius, the plastic 
deformation is maintained. Thus, during the reloading stage, the contact 
could only be re-established at α = αc0 with an initial value of -f0p (i.e. 
-8fcp/9), as shown in Fig. 2(d). With an increase in normal overlap at the 
reloading stage, the contact initially behaves elasto-adhesively with a 
stiffness of ke until f reaches point D (α = αmax), where the maximum 
normal force in previous loading stage is reached, and then plastic 
deformation prevails with a plastic stiffness of kp. It should be noted that 
αmax is the maximum overlap at which the unloading commences, and it 
would be only immediately updated and equal to the normal overlap 
when the contact is yielded again, to prepare for the possible unloading 
process in the next time step. 

For the contact before yielding (i.e. line BC), ke is a constant and does 
not vary with normal overlap. However, after the yielding of the contact, 
ke would increase with αmax, the details of which will be discussed in 
Section 3.3. Thus, the elastic stiffness ke of line BC in Fig. 1 corresponds 
to the lower limit of ke, and it is assigned as kel for convenience. 

Similar to JKR model, f0 at α = 0 in Fig. 1 is given as: 

f0 =
8
9
fce (4)  

fce = 1.5πΓR* (5)  

where fce is the maximum pull-off force before yielding; Г is the surface 
energy; R* is the equivalent radius. The critical normal overlaps in Fig. 1 
are given as: 

α0 =
f0

kel
=

8
9

fce

kel
(6)  

αy = α0 +
fy

kel
(7)  

αce = α0 −
fce

kel
(8)  

αfe = α0 −
fce

kel
−

4
9

fce

kcl
(9)  

αmax = αy +
fmax − fy

kp
withαmax = max

(
αmax,αy

)
(10)  

αp =

(

1 −
kp

ke

)
(
αmax − αy

)
+

(

1 −
kel

ke

)
(
αy − α0

)
+ α0 (11)  

αc0 = αp −
8
9

fcp

ke
(12)  

αcp = αp −
fcp

ke
(13)  

αfp = αp −
fcp

ke
−

4
9

fcp

kc
(14)  

where αp is derived from the normal force at point D: 

kp
(
αmax − αy

)
+ fy = ke

(
αmax − αp

)
(15)  

αp =

(

1 −
kp

ke

)

αmax +
kpαy − fy

ke
(16) 

For the contact before yielding, αmax in Eq. (10) is mathematically 
reduced to αmax = αy while ke is reduced to its minimum value (i.e. kel), 
thus, Eq. (11) is reduced to αp = α0, and fcp is reduced to fcp = fce (shown 
in Section 3.4), kc is reduced to kcl (shown in Section 3.2), resulting in αfp 
= αfe, αcp = αce, and αc0 = 0. Therefore, Eqs. (11–14) could be deemed as 
a general mathematical form for the calculation of critical normal 
overlaps, which are valid for both the contacts before and after yielding. 

The non-zero normal force could be classified into three states, fc for 
line AB or EF, fe for line BC or DE, fp for line CD: 

fe = ke
(
α − αp

)
(17)  

fp = fy + kp
(
α − αy

)
(18)  

fc = − fcp + kc
(
αcp − α

)
(19) 

Thus, the normal force f in Fig. 1 is mathematically given as: 

f =

⎧
⎪⎪⎨

⎪⎪⎩

fe α > αcp&fp > fe
fp α > αcp&fp ≤ fe
fc αfp ≤ α ≤ αcp
0 α < αfp ‖ cs = 0

(20)  

where “cs = 0” refers to the states: first loading with α < 0 (Fig. 2(a)) and 
reloading with α < αc0 (Fig. 2(d)). It should be noted that Eqs. (17)–(20) 
are valid for both the contacts before and after yielding. For example, for 
the contact before yielding, as shown above, ke = kel, αp = α0, thus, Eq. 
(17) is simplified to fe = kel(α− α0), which is intuitively expected in Fig. 1. 

2.2. Tangential contact force 

The tangential contact force ft is given as: 

f t = ktδt (21)  

where δt is the vector of tangential displacement; kt is tangential stiff
ness, which can be related to kn [5]: 

kt

kn
= 4

G*

E* (22)  

where G* and E* are the equivalent shear modulus and Young's 
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modulus, respectively; kn is the normal stiffness, i.e. kc for line AB or EF, 
ke for line BC or DE, kp for line CD, as shown in Fig. 1. For the sliding 
contact, i.e. kt|δt| > μf, the energy is dissipated from the interfacial 
sliding without introducing the viscous damping in the tangential di
rection. Thus, Eq. (2) is reduced to Ft = ft, given as: 

Ft = μf
δt

|δt|
(23)  

where μ is the sliding friction coefficient; f is normal force in Eq. (20). 

2.3. Damping force 

For the contact before yielding, besides the frictional dissipation 
through interfacial sliding and adhesive work, the energy dissipation is 
mainly attributed to the viscous elastic damping, especially in the 
normal direction. The damping force in the normal and tangential di
rection is given as: 

f nd = 2γ
̅̅̅̅̅̅̅̅̅̅
m*kn

√
Vn (24)  

f td = 2γ
̅̅̅̅̅̅̅̅̅
m*kt

√
Vt (25)  

where γ is the damping coefficient due to viscous and viscoelastic 
damping effect or energy dissipation of elastic wave propagation; m* is 
the equivalent mass; Vn and Vt are the relative velocity in normal and 
tangential direction, respectively. γ is related to elastic restitution co
efficient e0, given as: 

γ = − β
lne0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

π2 + (lne0)
2

√ (26)  

where β = 1 is the damping factor. 
For the contact after yielding, the energy dissipation of elastic wave 

propagation during impact is very small, compared to the ones due to 
plastic deformation, as reported by Ning et al. [14], indicating that 
viscous elastic damping could be ignored (i.e. β = 0). However, in the 
impact test, if the viscous damping force is omitted while the particle 
could not rebound, the contact force oscillates indefinitely along line D- 
E-F (Fig. 1), and a state of equilibrium can never be achieved as no 
energy is dissipated, as shown in Fig. 3. Meanwhile, the material is not 
perfectly plastic. Therefore, a small value of β (e.g. 0.1) is necessary, 
although its contribution to total energy dissipation can be ignored. 

3. Key parameters of the contact model 

In the improved contact model, the key parameters, i.e. yield point 
(fy, αy), stiffness (ke, kc, kp) and maximum pull-off force (fcp), are related 
to the work of deformation shown in Fig. 4, and they are discussed in this 
section. The physical nature of the contact is well kept during the 
derivation as shown below, and the proposed correlations are validated 
against the data digitized from the literature. 

3.1. Contact force and normal overlap at yield point, fy and αy 

The contact force and normal overlap at the yield point (point C in 
Fig. 1) are evaluated by assuming the same yield work as predicted by 
Thornton and Ning [10], given as: 

W2 =
fy

2

2kel
= Wy =

(
πR*py

)5

60E*4R*2 (27) 

Thus, the yield force and the corresponding normal overlap are given 
as: 

fy = fy0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
6
5

kel

πR*py

√

(28)  

αy − α0 =
fy

kel
= αy0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

8
15

πR*py

kel

√

(29)  

where fy0 and αy0 are the yield force and the corresponding normal 
overlap predicted by Thornton and Ning [10] in their non-linear contact 
model: 

fy0 =
π3R*2py

3

6E*2 (30)  

αy0 =
π2R*py

2

4E*2 (31)  

where py is the limiting contact pressure of the softer particle, i.e. py =

min(py1, py2) . py is related to the yield stress σy, given by Jackson & 
Green [15]: 

py = Cσy (32)  

where C is a coefficient related to its Poisson's coefficient ν, given by C =
1.295exp(0.736ν). It is similar to the model given by Chang et al. [16]: 

py = KH (33)  

where K is the hardness factor, given by K = 0.454 + 0.41ν; and H is the 
hardness, given by H = 2.8σy. In particulate systems, i.e. ν = 0.2– 0.4, 
both models give almost the same ratio of the yield contact pressure to 
yield stress, py/σy = 1.4– 1.7, as shown in Fig. 5. 

Fig. 3. Example of the oscillation of normal contact force with time if there is 
no viscous damping after yielding. 

Fig. 4. Work of deformation due to normal contact force in different con
tact stages. 
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For most particulate systems, the yield stress can be evaluated from 
the quasi-static test, i.g. nano-indentation test, the data of which can be 
referred to the material database or handbook. However, for the par
ticulate systems with high collision velocity, such as impact breakage, 
the yield stress is dynamic and sensitive to the strain rate [14,17]. In this 
case, the yield stress should be experimentally evaluated from the dy
namic test (e.g. dropping hammer experiment), which could be fitted by 
the following model: 

σy = σy
s(1+ Yln(Vi/V0) ) (34)  

where Vi is the characteristic strain rate of the particulate system in the 
simulation; σy is the characteristic yield stress at Vi; σy

s is quasi-static 
yield stress measured at the specified strain state V0; Y is an empirical 
parameter determined experimentally by the dynamic test. 

3.2. Stiffness kc 

As shown in Fig. 2(b), for the contact without yielding, the adhesive 
sticking work W0 needs to be overcome to separate the particles in 
contact. W0 is assumed to be the same as traditional JKR model, given as: 

W0 =
56
162

fce
2

kcl
+

17
162

fce
2

kel
= WJKR (35)  

where the derivation of W0 is shown in Appendix A; kel and kcl are the 
stiffnesses of the contact before yielding, corresponding to the lower 
limit of ke and kc, respectively. The ratio of kcl to kel is given as: 

kcl

kel
=

56
162

fce
2

kel

WJKR − 17
162

fce
2

kel

(36)  

where WJKR is given as [5]: 

WJKR = 7.09
(

Γ5R*4

E*2

)1/3

(37) 

Substituting Eqs. (5) and (37) into Eq. (36), given as: 

kel

kcl
= 0.92

kel

Γ1/3E*2/3R*2/3 − 0.3 (38) 

For the particle properties used in this work, kel/kcl predicted by Eq. 
(38) is larger than 1. If comparing kcl to the normal stiffness at α =
0 predicted by Hertz model with JKR theory, it is given as: 

kel

kcl
= 1.13

kel

kH− JKR,α=0
− 0.3 (39)  

kH− JKR,α=0 = 1.23
(
ΓE*2R*2)1/3 (40)  

where the derivation of kH-JKR, α=0 is shown in Appendix B. Thus, the 
stiffness kcl in Eq. (38) is very close to the stiffness at α = 0 predicted by 
Hertz model with JKR theory. 

For the contact after yielding (Fig. 2(c)-(d)), although ke in the 
unloading process increases with the maximum load, the ratio of ke/kc is 
assumed to be the same as kel/kcl predicted by Eq. (38). 

3.3. Stiffness ke 

In the unloading process after yielding, i.e. line DE in Fig. 1, the 
elastic stiffness ke should vary with αmax, as reported by Luding [13], 
Pasha et al. [12], Thornton et al. [18]. In the work of Luding [13] and 
Pasha et al. [12], ke varies linearly with αmax. However, as reviewed by 
Thornton et al. [18], ke should be a linear function of ̅̅̅̅̅̅̅̅̅αmax

√ . This is also 
in accordance with Hertz model: 

kH =
df H

dα = 2E*R*
̅̅̅̅̅̅̅̅̅̅
α/R*

√
(41)  

where fH = 4/3E*R*1/2α3/2 is the elastic force in Hertz model. Here, 
considering its physical nature, in the linear elasto-plastic and adhesive 
contact model developed in this work, ke is defined as: 

ke = kem

̅̅̅̅̅̅̅̅̅
αmax

R*

√

(42)  

where kem is assumed to be the maximum stiffness at a normal overlap of 
R*. 

The elastic stiffness ke in Eq. (42) can be evaluated through the given 
unloading line after yielding, i.e. ke0 at αmax0 is known, given as: 

kem = ke0

̅̅̅̅̅̅̅̅̅̅

R*

αmax0

√

(43) 

Thus, ke for line DE is given as: 

ke = ke0

̅̅̅̅̅̅̅̅̅̅
αmax

αmax0

√

(44) 

For the contact before yielding, i.e. α < αy for line BC, kel is the lower 
limit of ke, and it is calculated by substituting αmax = αy into Eq. (44), 
given as: 

kel = ke
(
αmax = αy

)
= ke0

̅̅̅̅̅̅̅̅̅̅
αy

αmax0

√

(45) 

As αy is a function of kel, as shown in Eq. (29), Eq. (45) should be 
solved together with Eq. (29) in an iterative fashion by initially 
assuming αy = αy0. 

The elastic stiffness ke in Eq. (42) can also be evaluated through the 
stiffness of the contact before yielding, i.e. kel for line BC in Fig. 1 is 
known. In this case, αy can be directly calculated from Eq. (29). Similar 
to Eq. (44), the elastic stiffness ke for line DE is given as: 

ke = kel

̅̅̅̅̅̅̅̅̅αmax

αy

√

(46) 

In the work of Luding [13] and Pasha et al. [12], to avoid ke being 
less than kp at small plastic deformation, kp is included into the calcu
lation of ke. If applying this concept to Eq. (42), ke is then given as: 

ke = kp +
(
kem − kp

)
̅̅̅̅̅̅̅̅̅
αmax

R*

√

(47)  

ke = kp +
(
ke0 − kp

)
̅̅̅̅̅̅̅̅̅̅
αmax

αmax0

√

(48)  

Fig. 5. Variation of the ratio of yield contact pressure py to yield stress σy with 
Poisson's ratio. 
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kel = kp +
(
ke0 − kp

)
̅̅̅̅̅̅̅̅̅̅

αy

αmax0

√

(49) 

To validate these two methods (i.e. without and with involving kp 
during the calculation of ke), the force-overlap response of loading/ 
unloading predicted by Ning [14] and Du et al. [19] is used. In the work 
of Ning [14], the impact test of an ammonium fluorescein particle to a 
silicon target at three impact velocity (i.e. 2, 5 and 10 m/s) is analysed 
by using the non-linear elasto-plastic and adhesive model developed by 
Thornton and Ning [10], while in the work of Du et al. [19], the 
indentation test of a ruthenium particle to a rigid and flat surface is 
analysed by using finite element model. The particle properties used in 
their work are shown in Table 1, and the equivalent Young's modulus is 
given by E* = E/(1-v2) as the wall in their work has a much larger 

Young's modulus than that of the particle. By using the Digitizer Tool of 
Origin software (Originlab, USA), fmax, αmax, αp and fcp are digitized from 
the three unloading curves in their work, as shown in Table 2, and ke and 
kp are re-calculated as: 

ke,i =
fmax,i

αmax,i − αp,i
(i = 1 − 3) (50)  

kp =
1
2

(
fmax,1 − fmax,2

αmax,1 − αmax,2
+

fmax,2 − fmax,3

αmax,2 − αmax,3

)

(51) 

By specifying the maximum value of αmax and the corresponding 
elastic stiffness ke in Table 2 as αmax0 and ke0, respectively, the variation 
of ke with normal overlap can be predicted by Eq. (44) or Eq. (48), as 
shown in Fig. 6. The prediction of Hertz model is also included in Fig. 6, 
which is the same as that of JKR theory at the same normal overlap for 
the unloading process with plastic deformation (i.e. α> > α0), as shown 
in Appendix B. 

In Fig. 6(a), the prediction of Eqs. (42)–(45) agrees well with the ones 
re-calculated from Ning et al. [14], which is intuitively expected as both 
of them are originated from Hertz model. According to the theory of 
Thornton [5], ke should be less than the value predicted by Hertz model 
(i.e. Eq. (41)) if cohesion and plastic deformation have significant effects 
on the unloading process. As shown in Fig. 6(a), ke predicted by Eqs. 
(42)–(45) fulfils this criterion even at small plastic deformation. On the 
contrary, ke is overestimated by Eqs. (47–49) especially at small plastic 
deformation, as kp contributes more to ke than that of αmax

0.5 at small αmax. 
In fact, in Eqs. (42–45), the minimum predicted value of ke is always 
larger than kp, as long as the contact in the unloading process obeys the 
same law of Hertz theory. Thus, kp is not needed in the calculation of ke 
as they are actually independent parameters from the physics point of 
view. 

In Fig. 6(b), the prediction of Eqs. (42–45) agrees better with the 
ones re-calculated from Du et al. [19] than that of Eqs. (47)–(49). The 
elastic stiffness in Du et al. [19] is very large, resulting in small effects of 
adhesion and plastic deformation on the unloading process. Thus, ke is 
very close to the ones predicted by Hertz model, which is very different 
to the work of Ning [14]. It should be noted that in the finite element 
simulation of Du et al. [19], different assumptions are used and kp de
creases significantly at small plastic deformation. Thus, if using Eqs. 
(47–49) to calculate ke, a smaller and changeable kp should be used for 
the comparison with ke at small plastic deformation. 

The contact parameters at the yield point (i.e. α = αy) is shown in 
Table 3. In the theory of Thornton and Ning [10], the plastic loading line 
is tangential to the elastic loading curve predicted by Hertz model, 
resulting in ke at the yield point being equal to πR*py while kp = ke. In 
this work, kel predicted by Eq. (45) is very close to πR*py, which agrees 

Table 1 
Particle properties used in the work of Ning (1995) and Du et al. (2007).  

Properties Ning Du et al. 

Radius (μm), R 2.45 4 
Density (kg/m3), ρ 1350 – 
Young's modulus (GPa), E 1.2 410 
Poisson's ratio, v 0.3 0.3 
Surface energy (J/m2), Г 0.2 1.0 
Yield pressure (MPa), py 35.3 5.52 × 103 * 
πR*py (N/m) 272 6.94 × 104  

* Calculated from the yield stress (py = Cσy). 

Table 2 
Re-calculated particle contact parameters based on the plot in Ning (1995) and 
Du et al. (2007).  

Parameters Ning Du et al. 

fmax (μN) 
42.4 8584.4 
20.9 5170.7 
8.3 2132.2 

αmax (nm) 
210.5 53.7 
112.6 35.7 
53.9 17.9 

αp (nm) 
177.3 33.4 
91.1 20.2 
41.3 8.2 

fcp (μN) 
8.4 321.5 
6.1 239.7 
4.6 170.8 

ke (N/m) 
1274 4.2 × 105 

958 3.3 × 105 

639 2.2 × 105 

kp (N/m) 217 1.8 × 105  

Fig. 6. Comparisons of stiffness ke predicted by different methods with (a) Ning (1995) and (b) Du et al. (2007) under different maximum normal overlaps αmax (i.e. 
the overlap at which the unloading commences). 
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well with this theory, whilst kel predicted by Eq. (49) is much over- 
estimated. Thus, ke in the following sections is calculated by Eqs. 
(42–45) unless otherwise specified. Meanwhile, if there are no experi
mental data available for the input parameters, i.e. kp, and kel (or αmax0 
and ke0), the following value is recommended for kel, and kp could be 
assumed to be the same as kel. 

kel = 2E*
̅̅̅̅̅̅̅̅̅̅̅

R*αy0

√

= πR*py (52)  

3.4. Maximum pull-off force fcp 

Compared to the contact before yielding, more adhesive sticking 
work is needed to separate the adhesive particles with plastic defor
mation. The increment is due to the flattening of the contact area, given 
as: 

W6 − W0 = πares
2Γ (53)  

where ares is the contact area at the residual deformation αres, and ares
2 =

R*αres is assumed. To be consistent with the reloading process shown in 
Fig. 2(d), where the contact could re-establish at the normal overlap αc0, 
the residual deformation is assumed to be αres = αc0. Thus, αres could be 
reduced to 0 for the contact without plastic deformation, which is 
intuitively expected. According to Eqs. (5–6, 12), the right-hand side of 
Eq. (53) is given as: 

πares
2Г = πΓR*αc0 = πГR*

(

αp −
8
9

fcp

ke

)

=
2
3

(

fceαp − fcpα0
kel

ke

)

(54) 

According to Eqs. (A1) and (A6), the left-hand side of Eq. (53) is 
given as: 

W6 − W0 =
16
27

1
A

(
fcp

2

ke
−

fce
2

kel

)

=
16
27

fce

A
fce

kel

(
fcp

2

fce
2

kel

ke
− 1

)

=
2
3

fceα0

A

(
fcp

2

fce
2

kel

ke
− 1

)

(55)  

where A is given as: 

A =
16
27

/(
56

162
kel

kcl
+

17
162

)

=
16
27

/(
56
162

ke

kc
+

17
162

)

(56) 

Substituting Eqs. (54, 55) into (53) yields: 

kel

ke

fcp

fce
2

2

− 1 = A
(

αp

α0
−

kel

ke

fcp

fce

)

(57)  

which can be further simplified as: 
(

fcp

fce

)2

+A
fcp

fce
−

(
αp

α0
A+ 1

)
ke

kel
= 0 (58) 

Thus, the maximum pull-off force fcp is given as: 

fcp

fce
=

-A +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2 + 4 ke
kel

(
αp
α0

A + 1
)√

2
(59) 

For the contact before yielding, i.e. αp = α0, ke = kel, Eq. (59) is 
mathematically simplified to fcp = fce. Thus, Eq. (59) is a general form for 
both contacts before and after yielding shown in Fig. 2. 

In the work of Pasha et al. [12], fcp is given as: 

fcp = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
162
137

πΓR*ke
(
αp − αy

)(
2 −

αp − αy

R*

)
√

(60)  

which is derived for constant ke. If considering the fact that ke varies with 
αmax, it can be further simplified by using similar derivations as above, 
given as: 

fcp

fce
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

162
137

πΓR*

fce

ke

fce

(
αp − αy

)(
2 −

αp − αy

R*

)
√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

B
ke

kel

(
αp − αy

)

α0

(
2 −

αp − αy

R*

)
√

(61)  

B =
162
137

×
16
27

=
96
137

≈ 0.7 (62) 

For the case with small plastic deformation, i.e. αmax is slightly larger 
than αy but with αp < αy, Eq. (60) or Eq. (61) will predict zero pull-off 
force, which is unrealistic. 

Thornton and Ning [10] also proposed a method to calculate fcp in 
their non-linear model, which is given as: 

fcp

fce
=

Reff

R* (63)  

where Reff is the effective curvature due to contact flattening, and it is 
calculated from the equivalent elasto-adhesive normal force feq at the 
same contact radius from which unloading commences. If applying this 
method to the linear model in this work, it is given as: 

Table 3 
Particle contact parameters at the yield point (α = αy) for the particles used in 
Ning (1995) and Du et al. (2007).   

Parameters 
ke = ke0

̅̅̅̅̅̅̅̅̅̅̅̅αmax

αmax0

√

ke = kp +
(
ke0 − kp

)
̅̅̅̅̅̅̅̅̅̅̅̅αmax

αmax0

√

Ning 

kel, N/m 283 418 
kH (α = αy), N/m 416 353 
αy, nm 10.4 7.5 
α0, nm 7.3 4.9 
kel/kcl 1.8 2.7 

Du et al. 

kel, N/m 6.7 × 104 2.1 × 105 

αy, nm 1.35 0.71 
α0, nm 0.25 0.08 
kel/kcl 3.9 12.6  

Table 4 
Summary of the calculation methods of maximum pull-off force.  

Formulations Equation number Remarks 

fcp
fce

=

-A +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2 + 4
ke

kel

(
αp

α0
A + 1

)√

2 

(59) 
A =

16
27

56
162

ke

kc
+

17
162 

fcp
fce

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

0.7
ke

kel

(
αp − αy

)

α0

(
2 −

αp − αy

R*

)
√

(61) re-derived based on Pasha et al. (2014) 

fcp
fce

=
fy + ke

(
αmax − αy

)

fy + kp
(
αmax − αy

) (64) not suitable for constant ke (i.e. not varying with αmax) 

fcp
fce

=

(
ke

kel

)3/2 
(67) not suitable for constant ke (i.e. not varying with αmax)  
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fcp

fce
=

Reff

R* =
feq

fmax
=

fy + ke
(
αmax − αy

)

fy + kp
(
αmax − αy

) (64) 

For large loading force (i.e. large αmax), fcp/fce approaches to ke/kp. 
Eq. (37) can also be used to estimate the adhesive work for the 

contact with plastic deformation by replacing R* with Reff, given as: 

W6

W0
=

(
Reff

R*

)4/3

=

(
fcp

fce

)4/3

(65) 

According to Appendix A, the ratio of W6 to W0 is given as: 

W6

W0
=

(
fcp

fce

)2(ke

kel

)− 1

(66) 

Substituting Eq. (66) into Eq. (65) gives: 

fcp

fce
=

(
ke

kel

)3/2

(67) 

These calculation methods are summarised in Table 4. In the work of 
Pasha et al. [12], a constant ke is used to check the sensitivity of fcp to αp. 
However, in that case, Eq. (64) predicts a constant fcp at large plastic 
deformation whilst Eq. (67) gives fcp = fce. Thus, only the case of varying 
ke with αmax is focused here. 

The predictions of these methods are compared with the results in 
Ning [14] and Du et al. [19], as shown in Fig. 7, with the particle 

properties and parameters shown in Tables 1–3. Here, ke is calculated 
based on Eq. (46) with kel in Table 3. For the ruthenium particle in Du 
et al. [19], kp shows a decrease at small plastic deformation but the 
decrement is not provided in their work, thus, kp is set to be kp = min
imum(kp, ke) for the calculations shown in Fig. 7 for convenience. For 
ammonium fluorescein particle, all methods predict a larger fcp than that 
of the non-linear elasto-plastic and adhesive contact model in Ning et al. 
[14]. For ruthenium particle, compared to the FEM results in Du et al. 
[19], Eq. (64) largely underestimates the fcp, but Eqs. (59) and (67) show 
a good agreement, whilst Eq. (61) overestimates fcp significantly. 
Meanwhile, Eq. (61) predicts fcp to be less than fce at small plastic 
deformation, which is not realistic. Thus, the predictions of Eqs. (59) and 
(67) are more practical than Eqs. (61) and (64). 

3.5. Time step 

The critical time step can be estimated from the single degree-of- 
freedom system of a mass m connected to ground by a spring of stiff
ness ke, for which the critical time step ΔTcrit is given as: 

ΔTcrit = 2
̅̅̅̅
m
ke

√

(68) 

As shown in section 3.3, ke in the unloading process is less than the 
ones predicted by Hertz model: 

ke ≤ 2ER
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αmax/R

√
(69) 

Thus, the critical time step could be given as: 

ΔTcrit = πR
̅̅̅̅
ρ
E

√ ̅̅̅̅̅̅
8

3π

√
(αmax

R

)− 1/4
(70) 

The critical time step based on Rayleigh surface wave is given as 
[20]: 

ΔTR =
πR

0.1631υ + 0.8766

̅̅̅̅
ρ
G

√

(71) 

By comparing Eqs. (70, 71), given as: 

ΔTcrit

ΔTR
=

0.1631υ + 0.8766
̅̅̅̅̅̅̅̅̅̅̅
1 + υ

√

̅̅̅̅̅̅
4

3π

√
(αmax

R

)− 1/4
(72) 

The variation of ΔTcrit/ΔTR with Poisson's ratio ν is shown in Fig. 8. 
For most particulate systems, 0.2 ≤ ν ≤ 0.4, ΔTcrit/ΔTR is 0.9–1.0 for 
αmax/R = 0.1. As the maximum normal overlap is usually less than 0.1R 
and ΔTcrit/ΔTR is inversely proportional to αmax/R, ΔTcrit/ΔTR could be 
roughly assumed to be 1 (using its lower limit). Therefore, the time step 
in DEM simulation for the contact model developed in this work could 

Fig. 7. Comparisons of maximum pull-off force fcp predicted by different methods with (a) Ning (1995) and (b) Du et al. (2007) under different maximum normal 
overlaps αmax (i.e. the overlap at which the unloading commences). 

Fig. 8. Variation of the ratio of critical time step ΔTcrit to Rayleigh time step 
ΔTR with Poisson's ratio. 
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also be evaluated from the Rayleigh time step in Eq. (71). 
It should be noted that the above analysis only provides the 

maximum limit of the time step, as it does not consider the details of the 
contact process. Thus, the value of time step used in DEM simulation 
should be evaluated based on the particulate systems. For most simu
lation systems, Δt = (0.1– 0.25)ΔTR can be adopted for a good balance 
between the computational time and accuracy, which is similar to the 
cases using Hertz contact model [5]. For particulate systems with high 
collision velocity, e.g. impact of particle against a wall, to accurately 
detect the contact details (e.g. the line EF in Fig. 1), much smaller time 
step is conservatively suggested, e.g. Δt = 0.01– 0.1ΔTR. 

3.6. Summary of the evaluation of key parameters 

In the contact model developed in this work, several parameters are 
involved, but most of them can be calculated based on the contact 
properties of single particle. For example, fy from Eq. (28), αy from Eq. 
(29), kc from Eq. (38) or Eq. (39), ke from Eq. (46) for the contact after 
yielding, fcp from Eq. (59). Thus, apart from the particle properties and 
interaction parameters in conventional contact models (i.e. Hertz- 
Mindlin model), such as Young's modulus, friction coefficient, etc., 
there are only four additional input parameters: surface energy Г, two 
stiffnesses (i.e. stiffness kel for the contact before yielding, plastic stiff
ness kp), and yield contact pressure py. Auto-calculation and estimation 
of the parameters involved in the model could be found from Excel 
worksheet in Supplementary Material. These parameters could be easily 
calculated from various single particle characterisation techniques, as 
described below. The evaluation of these parameters from the charac
terisation test of bulk powder (such as Shear Cell and FT4 rheometer) 
may also be possible in the future.  

1) Surface energy Г: it can be experimentally measured from the drop 
test [21] or centrifuge method [22]. However, for particle with large 
surface energy and small yield contact pressure, the experiment test 
could lead to large error (i.e. the contact is already yield during the 
test). In this case, surface energy Г can be roughly estimated from 
Hamaker constant of material [23] and then further calibrated by 
DEM simulation of bulk particle flow.  

2) Stiffnesses kel and kp: plastic stiffness kp is calculated directly from the 
loading curve, while minimum elastic stiffness kel could be calculated 
by Eq. (45) with ke0 and αmax0 extracted from unloading curve, where 
large loading force is needed to yield the contact in the indentation 
test. If no experimental data of the loading/unloading curves is 
available, kel can be estimated from yield contact pressure using Eq. 
(52), and kp can be assumed to be the same as kel.  

3) Yield contact pressure py: it could be preferentially calculated from 
the yield stress σy using Eq. (32) or Eq. (33). If high impact velocity is 
involved, the sensitivity of yield stress to strain rate should be 
considered by Eq. (34). The yield stress here is referred to the com
pressing yield stress instead of the pulling yield stress. Usually, σy/E 
is 0.001– 0.1 for most materials [17,19,24,25]. As the state of the 
contact (yield or not) is strongly determined by the yield contact 
pressure, σy should be carefully examined or calibrated. 

4. Critical sticking velocity 

In this section, the normal impact of a spherical particle against a 
plane wall is simulated, and the effect of yield contact pressure on the 
critical sticking velocity is investigated. The proposed contact model is 
also further validated against the experimental data in the literature. 
The value of the critical sticking velocity and parameters involved in 
following derivation could be quickly examined through Excel work
sheet in Supplementary Material. 

Based on the surface energy Г and yield contact pressure py, three 
kinds of characteristic velocity could be obtained from Fig. 4 and Ap
pendix A: 

Vs =

̅̅̅̅̅̅̅̅̅
2W0

m*

√

= 1.84
(Γ/R)5/6

ρ1/2E*1/3 (73)  

Vy0 =

̅̅̅̅̅̅̅̅̅
2W2

m*

√

=

̅̅̅̅̅̅̅̅̅̅̅

fy
2

m*kel

√

=
( π

2E*

)2
(

2
5ρ

)1/2

py
5/2 (74)  

Vy =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(W2 − W1)

m*

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

fy
2 − f0

2

m*kel

√

(75)  

where m = m* is the particle mass; R = R* is the particle radius; Vs is the 
adhesive sticking velocity without considering plastic deformation, 
below which the particle will stick to the wall due to the adhesive work, 
and Vs here has the same value as predicted by JKR theory; Vy0 is the 
yielding velocity without considering cohesion effect, above which the 
contact will have plastic deformation; Vy is the corresponding yielding 
velocity when the cohesion effect is included. 

If the particle approaches the plane wall, it will gain energy as a 
result of the attractive force between them (i.e. negative force, f = − f0 to 
f = 0 in line BC in Fig. 1). Thus, the total initial energy involved in the 
impact is given as: 

Wi =
1
2
mVi

2 +W1 (76)  

where the effects of potential energy (i.e. gravity) and viscous damping 
are omitted. When the particle velocity is reduced to zero, part of total 
initial energy is converted into stored elastic energy, We, and the 
remainder is dissipated through plastic deformation, (Wi− We). If the 
stored elastic energy, We, is larger than the adhesion work Wc required 
to separate the particle from the wall, then the particle will rebound. 
Otherwise, the particle will remain adhered to the wall. The plastic 
adhesive sticking velocity Vys is defined as the critical impact velocity, at 
which the bound velocity is zero, i.e. We = Wc. Depending on the yield 
contact pressure, at the impact velocity of Vi = Vys, the contact could be 
yielded or not yielded at the end of the loading process. The critical yield 
contact pressure distinguishing these two cases is governed by either of 
the following criteria: 

W0 = W2 − W1 or Vy = Vs (77) 

For the case with Vy < Vs, the contact starts yielding before the end of 
the loading process at the impact velocity of Vi = Vys. In this case, the 
plastic adhesive sticking velocity Vys is strongly affected by the 
maximum pull-off force fcp. According to Appendix A, We and Wc at the 
impact velocity of Vi = Vys are given as: 

We = W4 =
fmax

2

2ke
= Wc = W5 +W6 =

1
2

fcp
2

ke

(

1+
56
81

ke

kc

)

(78)  

where fmax is related to the impact kinetic energy: 

mVys
2

2
= − W1 +W2 +W3 +W4 =

mVy
2

2
+

fmax
2 − fy

2

2kp
(79) 

By initially assuming fmax = fy, Vys could be obtained using an iter
ative method: αmax from Eq. (10), ke from Eq. (46), fcp from Eq. (59), Vys 
from Eq. (79), and then new fmax from Eq. (78) for next iteration. For the 
case with Vy ≥ Vs, the contact has not yet yielded at the end of the 
loading process at the impact velocity of Vi = Vys, thus, Vys is not affected 
by fcp, and it is given by Vys = Vs. 

The variation of plastic adhesive sticking velocity Vys with yield 
contact pressure py is shown in Fig. 9, where viscous damping is not 
included. The physical properties of the ammonium fluorescein particle 
and silicon wall are shown in Table 5, which are updated and sum
marised by Kim and Dunn [26]. The adhesive sticking velocity is Vs =

0.66 m/s. Instead of using the fitting value (ke, kp) in Table 2, kp is 
assumed to be equal to be kel, and kel is given by Eq. (52). At small yield 
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contact pressure, Vys is much larger than Vs, which is expected for ad
hesive contact with plastic deformation. With an increase in yield con
tact pressure, Vys decreases until it reaches the critical point, where py 
meets the criterion of Eq. (77). With a further increase in the yield 
contact pressure, Vys does not change anymore and remains equal to the 
adhesive sticking velocity Vs. 

It should be noted that there is a special case, i.e. fy < f0 or W2 < W1 
in Fig. 4, as shown in the shadow zone in Fig. 9, in which the attractive 
force (such as van der Waals force) would always induce plastic defor
mation as long as the particles can be brought into contact. This is 

known as adhesion-induced plastic deformation or jump-in induced 
plastic deformation. If kel is given by Eq. (52), the critical yield contact 
pressure could be derived from fy = f0 or W2––W1, given as: 

py

E
=

2
π2/3

(
5
6

)1/6( Γ
ER

)1/3
= 0.9

( Γ
ER

)1/3
(80) 

Thus, large surface energy corresponds to larger critical yield contact 
pressure. A non-dimensional number, cohesion-yield number, is pro
posed here: 

Fig. 9. Variation of critical velocity with yield contact pressure, where the 
velocity is normalised by adhesive sticking velocity Vs predicted by JKR theory; 
Vys is the critical sticking velocity considering both cohesion and plastic 
deformation; Vy0 (not considering cohesion effect) and Vy (considering cohesion 
effect) are the yielding velocity, above which the contact could be yielded. 

Table 5 
Physical properties of particle and wall in the normal impact test.  

Properties Particle Wall 

Radius (μm), R 2.45 – 
Density (kg/m3), ρ 1350 2330 
Young's modulus (GPa), E 1.2 166 
Poisson's ratio, ν 0.33 0.28 
Yield pressure (MPa), py – 120 
Surface energy (J/m2), Г 0.24  

Fig. 10. Comparisons of critical sticking velocity Vys predicted by this work 
with the experimental data of Wall. et al. (1990). 

Table 6 
Critical sticking velocity Vys for different particle size.  

Particle 
properties 

Radius (μm) 3.445 2.45 1.72 1.29 Mean 
relative error 

Vs (m/s) 0.49 0.66 0.88 1.12 

Vys 

Wall. et al. 
(1990) 

1.18 1.96 3.25 4.63 – 

py = 25 MPa, 
e0 = 1 

1.51 2.25 3.4 4.76 12.5% 

py = 30 MPa, 
e0 = 1 1.24 1.86 2.83 3.96 9.4% 

py = 30 MPa, 
e0 = 0.81 1.38 2.08 3.16 4.43 7.5%  

Fig. 11. Snapshots of particle flow (Г = 27 mJ/m2) in FT4 rheometer: (a) 
initial particle bed with blade rotating anti-clockwise while penetrating down; 
(b) reference case considering only cohesion (using Hertz model with JKR 
theory); (c) considering both cohesion and plastic deformation (using the linear 
elasto-plastic and adhesive contact model developed in this work); (b) and (c) 
are at both the same penetration depth (i.e. time) and viewpoint. 

Table 7 
Physical properties of particle and geometry in the flowability measurement by 
FT4 rheometer.  

Properties Particle Blade Vessel 

Radius (mm), R 0.2–0.3 – – 
Density (kg/m3), ρ 2500 7800 2500 
Young's modulus (MPa), E 63 210 63 
Poisson's ratio, ν 0.2 0.3 0.2 
Contact yield pressure (MPa), py 0.5 – –  

Table 8 
Interaction parameters of particle and geometry in the flowability measurement 
by FT4 rheometer.  

Interaction parameters Particle-Particle Particle-Blade Particle-Vessel 

Restitution coefficient, e0 0.93 0.95 0.93 
Sliding friction, ρ 0.5 0.3 0.5 
Surface energy (mJ/m2), Г 3.5, 27 3.1 2.6  
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CY =
py

3R
E2Γ

(81) 

CY < 1 indicates the occurrence of adhesion-induced plastic defor
mation. It is also close to the ratio of fy0/fce, which is 1.1 times of CY. For 
a given material, with a decrease in particle size, CY decreases, and there 
is a critical particle size, beyond which adhesion-induced plastic 
deformation could occur (i.e. the attractive force itself could induce 
plastic deformation). Below this critical particle size, the smaller the 
particle size, the more cohesive the particle behaves than the one pre
dicted by traditional JKR theory. Namely, particle needs to be more 
cohesive (i.e. larger surface energy) in JKR theory to get the same crit
ical sticking velocity as predicted by the ones with plastic deformation. 

The plastic adhesive sticking velocity Vys is also examined by 
comparing the value predicted by the contact model in this work with 
the experimental data of Wall et al. [27], as shown in Fig. 10 and 
Table 6. Four particle radius are used, i.e. R = 3.445, 2.45, 1.72 and 
1.29 μm, with other physical properties shown in Table 5. For the cases 
without considering viscous damping (i.e. e0 = 1), Vys is analytically 
calculated by solving Eqs. (78, 79). For the cases considering viscous 
damping, a DEM simulation is carried out, and the corresponding 
restitution coefficient in Eq. (26) is set to be e0 = 0.81, which corre
sponds to the limit restitution coefficient in Wall [27]. Viscous damping 
leads to larger value of Vys, with a relative increment of about 10%, as 
shown in Table 6. It is clear that considering both viscous damping and 
plastic deformation in the simulation could lead to a better agreement 
with the experimental data of Wall et al. [27]. As shown in Table 6, the 
critical sticking velocity Vys is much larger than the one Vs predicted by 
JKR theory, and the difference increases with the decrease in particle 
size. 

5. Flowability of bulk powder 

To investigate the combined effects of cohesion and plastic defor
mation on the flowability of bulk powder, the particulate system of FT4 
rheometer is simulated, where a twisted blade rotates anti-clockwise 
while penetrating down into a particle bed, as shown in Fig. 11. The 
input mechanical work expended for the blade motion is recorded and 
referred as the flow energy, which can be used to infer the flowability of 
the powder, i.e. powder with poor flowability (e.g. very cohesive) usu
ally corresponds to large flow energy. More details can be found in the 
work of Pasha et al. [3] and Nan et al. [28]. As detailed information for 
both the parameters of single particle and corresponding bulk test is also 
not available together in the literature, only DEM simulation is carried 
out in this section. 

In the DEM simulations, the diameter of the blade and vessel 

Fig. 12. Flow energy of cohesive powder in FT4 rheometer predicted by the 
linear elasto-plastic and adhesive contact model: without and with considering 
plastic deformation; the flow energy is calculated at the penetration depth of 
10 mm and normalised by the ones predicted by the DEM simulation using 
Hertz-Mindlin model with JKR theory. 

Table 9 
Comparisons of the contact model for the Elasto-plastic and adhesive contact.  

Contact model Thornton and 
Ning [10] 

Pasha 
et al. 
[12]* 

Luding 
[13] 

This 
work 

Computational time and 
complexity High Low Low Low 

Unified mathematical 
equations Provided / Provided Provided 

Ability to consider both 
elastic and plastic 
deformation in dynamic 
particulate system 

Yes Yes / Yes 

Rigorous equations to 
calculate the key 
parameters 

Provided / / Provided 

Method to calculate critical 
sticking velocity 
considering both elastic 
and plastic deformation 

Part- 
provided** 

/ / Provided  

* It is referred to the full model instead of the simplified version in Pasha et al. 
[12]. 

** Effect of elastic and plastic deformation on critical sticking velocity is dis
cussed separately in Thornton and Ning [10]. 

Table 10 
Total computational time used in the simulation cases (Г = 3.5 mJ/m2, 73,577 
particles) in Section 5.  

Cases Computational time 
(min) 

Hertz model with JKR theory* 514 
Contact model proposed in this work (without plastic 

deformation**) 487 

Contact model proposed in this work (with plastic 
deformation) 512  

* Built-in JKRV2 model in EDEM software is used. 
** In this case, the yield contact pressure is artificially set to a very high value 

to ensure the contact is always below the yield point to avoid any plastic 
deformation. 

Fig. 13. Variation of normal stiffness with normal overlap in Hertz model and 
Hertz-JKR model for the case with R*=2.45 μm, E*=1.3 GPa and Г=0.2 J/m2. 
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(cylinder) is 23.5 mm and 25 mm, respectively. The particle radius is 
0.4–0.6 mm, with an averaged value of 0.5 mm. The total particle 
number is 73,577, forming an initial particle bed height of 19 mm. To 
reduce the computational time, the tip speed of the blade is set to 0.25 
m/s, and only the first 10 mm penetration depth is simulated. The 
physical properties of particle and geometry walls are shown in Table 7, 
and the corresponding interaction parameters are shown in Table 8. Two 
surface energies are used for particle-particle interaction, i.e. 3.5 and 27 
mJ/m2, while the surface energy for particle-wall interaction is constant 
in all cases. Thus, when considering plastic deformation, based on py =

0.5 MPa shown in Table 7, the cohesion-yield number (Eq. (81)) for 
particle-particle interaction (R* = R/2) is CY = 4.2 for Г = 3.5 mJ/m2, 
and CY = 0.5 for Г = 27 mJ/m2, respectively. 

By using the linear elasto-plastic and adhesive contact model 
developed in this work, two systems are simulated here: with and 
without considering plastic deformation. In the former, plastic stiffness 
kp is assumed to be equal to kel, and kel is given by Eq. (52) with the yield 
contact pressure of particles shown in Table 7. In the latter, stiffness kel 
has the same value as that of the former, while the yield contact pressure 
is artificially set to a very high value to ensure the contact is always 
below the yield point to avoid any plastic deformation. The corre
sponding DEM simulation using Hertz model with JKR theory is also 
conducted as a reference case. 

Fig. 12 shows the flow energy of cohesive powder in FT4 rheometer, 
where the flow energy is calculated at the penetration depth of 10 mm 
and normalised by the value predicted by the DEM simulation using 
Hertz-Mindlin model with JKR theory. For the case without considering 
plastic deformation, the flow energy predicted by the contact model in 
this work is very close to the ones predicted by the simulations using 
Hertz-Mindlin model with JKR theory for the two surface energies used. 
It is obvious that the powder behaves more “cohesively” when consid
ering plastic deformation, especially for the case with larger surface 
energy. These findings also agree well with the snapshots in Fig. 11. 

6. Discussions 

For the elasto-plastic and adhesive contact, only a limited number of 
models are available to estimate the contact force of particles for DEM 
simulations, i.e. the non-linear model of Thornton and Ning [10], the 
linear models of Pasha et al. [12] and Luding [13]. Compared to these 
models, the newly developed model in this work shows huge improve
ments in terms of physical nature and computational time, which are 
described in detail below and summarised in Table 9. 

The proposed model in this work is a linear version of the non-linear 
model of Thornton and Ning [10], but its physical nature is well kept. 
Compared to Thornton and Ning's model, the proposed contact model 
has several advantages: 1) much less computational time. The governing 
equations of the non-linear model of Thornton and Ning [10] are in a 
very complex form. As their model is not available in commercial and 
open-source DEM software packages, the detail of the computational 
time is not available. However, it is expected that Thornton and Ning's 
model will be very computationally expensive for DEM simulation of 
industrial particulate systems due to its non-linearity nature. For the 
particulate system in Section 5, the total computational time of the 
newly developed model is on par with Hertz model with JKR theory, as 
shown in Table 10, where 10 CPU cores on DELL PowerEdge T640 
workstation are involved. 2) more straight-forward. The critical sticking 
velocity and restitution coefficient can be easily derived to consider the 
effect of cohesion and plastic deformation concurrently, while these two 
effects are derived separately in Thornton and Ning [10] due to the 
complexity of the governing equations. 

The proposed contact model has several additional advantages: 1) 
Compared to Pasha et al. [12], thorough unified mathematical equations 
are formally presented here, as shown in Section 2, making it easy for 
implementation in DEM software packages with low computational 
time, while no similar mathematical framework could be accessed in 

Pasha et al. [12]. 2) Compared to Luding [13], both the initial elastic and 
plastic deformation could be considered here, making it more realistic, i. 
e. in dynamic particulate systems, the external load applied on the 
particles at some regions is not large enough to cause yielding, and 
hence the contact is still elasto-adhesive. 3) Compared to both linear 
models of Pasha et al. [12] and Luding [13], rigorous equations are 
proposed here to calculate the key parameters (such as stiffnesses and 
maximum pull-off force). On the contrast, the models Pasha et al. [12] 
and Luding [13] involves a number of key parameters which is not 
accessible from single particle characterisation. The proposed contact 
model is also well validated against the numerical simulation (FEM) and 
experimental work in literature. 4) Compared to both linear models, the 
physical nature of contact is well kept during the derivation, for 
example, both the adhesive sticking velocity predicted by JKR theory 
and plastic work predicted by plasticity theory are guaranteed in the 
proposed contact model. 5) Compared to both linear models, the number 
of parameters required for experimental characterisation in the pro
posed contact model is minimised, for example, compared to Hertz 
model with JKR theory, only the yield stress is additionally required in 
some cases, which is also summarised in Section 3.6. 

The proposed contact model could be reduced to simpler case, such 
as elasto-adhesive contact, elasto-plastic contact, as shown in Sections 2 
& 3. It is therefore applicable for DEM simulation of most particulate 
systems. Of course, the focus of the proposed contact model is mainly on 
elasto-plastic and adhesive contact. For particles with CY < 1, the effect 
of plastic deformation on the behaviour of cohesive powder must be 
taken into account. Plastic deformation could also have a significant 
effect on bulk behaviour of cohesive powder if the characteristic velocity 
of the particulate system is larger than the yield velocity Vy. 

7. Conclusions 

Based on the work of Thornton and Ning [10] and Pasha et al. [12], 
an improved linear model is developed for elasto-plastic and adhesive 
contact in DEM simulation. This contact model is then applied to the 
analysis of single particle impact test and the DEM simulation of bulk 
particle behaviour in FT4 rheometer. The main results from the present 
study are summarised as follows:  

1) A general and mathematic form is proposed for the contact model, 
with new correlations to estimate the parameters involved in the 
model, including various stiffnesses (ke, kp, kc), yield point, 
maximum pull-off force and time step. The physical nature of contact 
is well kept during the derivation, and the correlations are validated 
against the data extracted from the literature. Compared to previous 
contact models, the number of parameters required for experimental 
characterisation is minimised in the proposed contact model.  

2) The adhesive work and yield work are guaranteed to be the same as 
the non-linear model of Thornton and Ning [10]. The stiffness in the 
unloading process is scaled to the square root of the maximum 
overlap at which unloading commences. The maximum pull-off force 
increases with the plastic deformation, and it can be reduced to the 
form predicted by JKR theory if the contact is not yielded. The 
estimation correlations for elastic stiffness and maximum pull-off 
force are validated by the loading/unloading curves reported in 
the literature. The time step can be evaluated based on Rayleigh time 
step.  

3) A new correlation is proposed to calculate the plastic adhesive 
sticking velocity. The sticking velocity of cohesive particle with a 
small yield contact pressure is larger than the one predicted by JKR 
theory. The contact model developed in this work is also validated by 
comparing the sticking velocity predicted against the experimental 
data in literature.  

4) A cohesion-yield number is proposed to describe the extent of 
adhesion-induced yielding, in which the attractive force would al
ways induce plastic deformation as long as the particles can be 
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brought into contact. For the particle below critical size, the effect of 
plastic deformation should be considered and the particles behaves 
more “cohesively” than the ones predicted by JKR theory.  

5) The flowability of bulk powder is strongly affected by the plastic 
deformation, especially for the particles with large surface energy. 
The bulk powder in FT4 rheometer behaves more “cohesively” if 
considering plastic deformation. 
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Appendix A 

The work of deformation due to normal contact force in each stage in Fig. 4 is derived as follows: 
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Appendix B 

In the Hertz model with JKR theory, the contact force and normal stiffness are given as: 

fH− JKR =
4E*a3

3R* −
̅̅̅̅̅̅̅̅̅̅̅̅̅
8πΓE*

√
a3/2 (B1)  

kH− JKR = 2E*a
̅̅̅̅̅̅̅̅̅̅̅
fH/fce

√
− 1

̅̅̅̅̅̅̅̅̅̅̅
fH/fce

√
− 1
/

3
(B2)  

where fce = 1.5πГR*; a is the contact radius; fH is the equivalent Hertz force with the same contact radius. a and fH are given as: 

α =
a2

R* −

(
2πΓa

E*

)1/2

(B3)  

fH =
4E*a3

3R* (B4)  

where α is the normal physical overlap. At the point α = 0, the contact radius is given as: 

a =

(

2π ΓR*2

E*

)1/3

(B5) 

Substituting Eq. (B5) into Eqs. (B4) and (B2), given as: 
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fH

/

fce =
16
9

(B6)  

kH− JKR,α=0 =

(
16
27

π
)1/3(

ΓE*2R*2)1/3 (B7) 

Similarly, at the point α = α0, the contact force fH-JKR = 0, given as: 

a =

(
9π
2

ΓR*2

E*

)1/3

(B8)  

fH/fce = 4 (B9)  

kH− JKR, α=α0 =
6
5

(
9
2

)1/3

π1/3( ΓE*2R*2)1/3 (B10)  

α0 =

(
3
4

)1/3(π2R*Γ2

E*2

)1/3

(B11) 

At this point, the normal stiffness of Hertz model with the same overlap is given as: 

kH, α=α0 = 2E*
̅̅̅̅̅̅̅̅̅̅
R*α0

√
= 2
(

3
4

)1/6

π1/3( ΓE*2R*2)1/3 (B12) 

By comparing (B12) and (B10), given as: 

kH− JKR, α=α0

kH, α=α0

=
3
̅̅̅
3

√

5
≈ 1.04 (B13) 

Thus, for the normal overlap larger than α0, i.e. fH-JKR > 0, the normal stiffness in Hertz model with JKR theory (Eq. (B2)), could be estimated by the 
ones predicted by Hertz model (Eq. (41)) at the same normal overlap, which is also clear illustrated in Fig. 13. 

Appendix C. Supplementary data 

Excel worksheet is provided for quick calculation of the parameters involved in the proposed contact model and the critical sticking velocity. 
Supplementary data to this article can be found online at https://doi.org/10.1016/j.powtec.2022.117634. 
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